Topic: Addiction and Gambling

Addiction

- Can economists selfdestructive addictions be rational?
- Gary Becker (1992 Nobel Prize in Economics) answered that question
- Rational people are aware of the long-run consequences of their actions
- They may engage in selfdestructive behavior if the current pleasure outweighs the anticipated future costs

Gary Becker

Gary Becker, Michael Grossman, and Kevin Murphy, "Rational Addiction and the Effect of Price on Consumption," <u>American Economic Review</u>, 81:2 (1991), 237-241

Theory

- Becker assumed the person maximizes utility subject to a budget
- The person's utility function is key to the theory:

$$U_t = f(C_t, S_t, G_t)$$

- Utility at time t depends on consumption of the addictive good (e.g. cigarettes) at time t, the stock of addiction at time t, and consumption of other goods at time t
 - The marginal utility of current consumption of the addictive good is positive
 - The marginal utility of the stock of addiction is negative, a property known as tolerance
 - An increase in the stock of addiction (e.g. how much you have smoked in the past) increases the marginal utility of smoking another cigarette today, a property known as reinforcement

• Formally speaking:
$$\frac{\partial^2 U}{\partial C \partial S} > 0 \ or \ U_{12} > 0$$

Evolution of the Stock

- The stock of the addictive good evolves over time according to the equation: $S_{t+1} = S_t(1-\delta) + C_t$
- The stock next year equals the stock this year, less depreciation at rate δ , plus current consumption
- For simplicity, let $\delta = 1$ (the stock depreciates rapidly), so $S_{t+1} = C_t$
- This means the utility function can be written: $U_t = f(C_t, C_{t-1}, G_t)$
- The consumer maximizes utility subject to the budget: Y_t = p_tC_t + G_t, where p = price of addictive good and the price of G is 1€

Optimal Consumption of Addictive Good

Normal Good

The slope of an indifference curve equals the slope of the budget constraint

Addictive Good

A rational person knows that smoking now will reduce their utility next year, so they act as if the price of C is higher than p

What is Z_t ?

- Z_t represents the realization that current smoking causes future harm
- The *full price* of smoking is $p_t + Z_t$
- The size of Z_t depends on my discount rate
 - If I discount the future heavily, Z_t gets smaller and the full price approaches p_t
 - I'm more likely to smoke
 - This is the first prediction from the theory:
 smoking is associated with a high discount rate

The Reinforcement Property

- To repeat the reinforcement property: An increase in the stock of addiction increases the marginal utility of current consumption
- The stock of addiction depends on past consumption, so we can rephrase this property in terms of observables: An increase in past consumption of the addictive good increases current consumption
- This is the 2nd prediction from the theory

Future Consumption Affects Current Consumption

- If the future price of cigarettes increases I will smoke less next year
- Remember that $U_{12} > 0$
- This works in reverse as well: a decrease in future consumption of the addictive good reduces the marginal utility of the future stock of addiction
- But the future stock of addiction is simply C_t , so the marginal utility of current smoking falls, and I smoke less today
- This is the 3rd prediction from the theory: an increase in future consumption of the addictive good reduces current consumption
- Be careful in empirical work to measure consumption by current smoking, not packs of cigarettes purchased – you may purchase and hoard cigarettes today when you expect the future price to rise

The Demand for Cocaine

 Grossman and Chaloupka estimated a model of demand for cocaine by young adults:

$$C_{it} = \beta_1 C_{i,t-1} + \beta_2 C_{i,t+1} + \beta_3 P_{it} + u_{it}$$

Expect $\beta_1 > 0$ because Expect $\beta_2 > 0$ past consumption affects current consumption

because future consumption affects current consumption

Higher current price should reduce current use

Michael Grossman and Frank Chaloupka, "The Demand for Cocaine By Young Adults: A Rational Addiction Approach," Journal of Health Economics, 17 (1998), 427-474

Results

- Annual participation and frequency of cocaine use given participation are negatively related to the price of cocaine
- Participation and frequency of cocaine use are positively related to past and future consumption
- The long-run price elasticity of total consumption (probability of use x conditional use given participation) is -1.35
- They were not able to 'pin down' an estimate of the discount factor, but other research supports the prediction that high discount factors contribute to addictive behavior

Gambling

- Gambling is an age-old and widespread phenomenon
- 2014 World Cup odds:

Germany 5/1*	<u>Spain 8/1</u>	Argentina 8/1
<u>Brazil 9/1</u>	Netherlands 11/1	France 12/1
<u>Italy 12/1</u>	Belgium 16/1	England 20/1
Russia 20/1	Colombia 22/1	Portugal 28/1
<u>Chile 33/1</u>	Ukraine 50/1	<u> Uruguay 50/1</u>

^{*5/1} odds means you bet 1€ and get 6€ if Germany wins, giving you a profit of 5€

 Pathological gambling can be a significant problem: personal and family debt, bankruptcy, crime

The Gambling Puzzle

- Despite the importance of gambling, economists do not have a good theory to explain it
 - One possibility is that gamblers are 'risk lovers'
 - But how do you reconcile gambling with the purchase of insurance – which indicates that people do not like risk?
 - One possibility is that the utility function displays both risk-averse and risk-loving segments
 - But this doesn't explain anything beyond the assumptions we make

The Standard Theory of Gambling

- John Conlisk developed the standard theory of gambling
- He noted that most gambles are small for example, you bet 10€ on a horse at 3/1 odds
- That's hard to explain with any theory that involves the curvature of the utility function (because the gains and losses are small)
- Conlisk proposed that people derive a small amount of utility from gambling itself
- This 'gambler's bonus' (Ψ) decreases as the size of the bet increases

Graph of Standard Theory - 1

Graph of Standard Theory - 2

Pathological Gambling

- Brain science suggests that Ψ increases with the size of the bet for some people
- Such people would 'bet the limit' even at unfair odds

Nyman's Theory of Gambling

- John Nyman offers a <u>behavioral</u> explanation for gambling
- Not standard economics, but it may be plausible

In the 2004 movie, Dodgeball, Vince Vaughn's character says, "Money won is twice as sweet as money earned."

Nyman's Theory - 2

Empirical Results & Comments

- Decision to gamble
 - People with labor market experience are more likely to understand that obtaining additional income requires more work → more likely to gamble
 - Those working fulltime are more likely to regard extra work as reducing utility → more likely to gamble
- Frequency of gambling
 - People with low wage rates and unpleasant jobs place more value on the extra money from winning \rightarrow gamble more often
- The behavioral theory has a risk-loving perspective: money won from gambling has more utility than money lost
- This person would not buy insurance, so we would need a different behavioral theory to explain insurance purchase

